导航菜单
首页 >  王斯萌  > 【法国巴黎南大学Orsay数学研究所】Individual ergodic theorems on von Neumann algebras

【法国巴黎南大学Orsay数学研究所】Individual ergodic theorems on von Neumann algebras

 

 

报告题目: Individual ergodic theorems on von Neumann algebras

报告人:   王斯萌 博士后(法国巴黎南大学Orsay数学研究所)

报告时间: 2020年6月12日(星期五)下午16:00-17:00           

报告地点: 腾讯视频会议(线上)

会议 ID:834 765 684 会议密码:314159         

校内联系人:江永乐 副教授      联系电话:84708351-8033

报告摘要: Birkhoff’s celebrated individual ergodic theorem asserts that for a measure-preserving ergodic transformation on a measure space, the time average is equal to the space average almost everywhere. Since the theory of von Neumann algebras is a quantum analogue of the classical measure theory, it is natural to study similar individual ergodic theorems in the setting of von Neumann algebras. The study was exactly initiated by Lance in 1970s, and witnessed fruitful progress in recent decades with the help of modern tools from the operator space theory, such as the noncommutative vector-valued Lp-spaces studied by Pisier, Junge and Xu. This talk aims to give a gentle introduction to the aforementioned topic, and if time permits, we may also present some recent results in this direction, in particular ergodic theorems for some group actions on von Neumann algebras and for positive contractions on Lp-spaces, which is joint work with Guixiang Hong, Ben Liao and Samya Ray.

报告人简介:王斯萌,2016年获得法国贝桑松大学(导师:许全华)和波兰科学院数学研究所(导师:Adam Skalski)联合培养博士学位,现为法国巴黎南大学Orsay数学研究所Hadamard讲师(博士后)。主要研究兴趣包括量子群,非交换调和分析,算子空间,算子代数及自由概率论等。已在Duke Math.J.,J.Operator Theory, Comm.Math.Phys.,Indiana Univ.Math.J.等主流杂志上发表多篇论文。

相关推荐: